Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic11

Direct product G=N×Q with N=C2 and Q=C22×Dic11
dρLabelID
C23×Dic11352C2^3xDic11352,186


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic11
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic11) = C22×C11⋊C8central extension (φ=1)352C2.1(C2^2xDic11)352,115
C2.2(C22×Dic11) = C2×C4×Dic11central extension (φ=1)352C2.2(C2^2xDic11)352,117
C2.3(C22×Dic11) = C2×C44.C4central stem extension (φ=1)176C2.3(C2^2xDic11)352,116
C2.4(C22×Dic11) = C2×C44⋊C4central stem extension (φ=1)352C2.4(C2^2xDic11)352,120
C2.5(C22×Dic11) = C23.21D22central stem extension (φ=1)176C2.5(C2^2xDic11)352,121
C2.6(C22×Dic11) = D4×Dic11central stem extension (φ=1)176C2.6(C2^2xDic11)352,129
C2.7(C22×Dic11) = Q8×Dic11central stem extension (φ=1)352C2.7(C2^2xDic11)352,140
C2.8(C22×Dic11) = Q8.Dic11central stem extension (φ=1)1764C2.8(C2^2xDic11)352,143
C2.9(C22×Dic11) = C2×C23.D11central stem extension (φ=1)176C2.9(C2^2xDic11)352,147

׿
×
𝔽